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Abstract Quantum logic introduced a paradigm shift in the axiomatization of quantum the-
ory by looking directly at the structural relations between the closed subspaces of the Hilbert
space of a system. The one dimensional closed subspaces correspond to testable properties
of the system, forging an operational link between theory and experiment. Thus a property
is called actual, if the corresponding test yields “yes” with certainty. We argue a truly op-
erational definition should include a quantitative criterion that tells us when we ought to be
satisfied that the test yields “yes” with certainty. This question becomes particularly press-
ing when we inquire how the usual definition can be extended to cover potential, rather than
actual properties. We present a statistically operational candidate for such an extension and
show that its representation automatically captures some essential Hilbert space structure.
If it is the nature of observation that is responsible for the Hilbert space structure, then we
should be able to give examples of theories with scope outside the domain of quantum the-
ory, that employ its basic structure, and that describe the optimal extraction of information.
We argue signal analysis is such an example.

Keywords Potential property · Quantum logic · Quantum theory · Signal analysis ·
Optimal observation

1 What Do We Observe?

Clearly observation is a process between the observer and the observed, but what is that we
seek to observe? A starting point for an answer is provided for in the famous 1936 article
by John von Neumann and Garret Birkhoff, The Logic of Quantum Mechanics [4]. They
realized that much of the essence of quantum theory lies in the structural relations between
the closed subspaces of the Hilbert space H. This was a very important step because the one
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dimensional closed subspaces of the Hilbert space H have an interpretation as operational
procedures in the laboratory that test propositions with only two possible answers: “yes”
or “no”. Birkhoff and von Neumann called such propositions “operational propositions”,
nowadays, we simply call them “properties”. In general properties hold only with a certain
probability, but in case that probability is 1, the corresponding property is called actual.
Since the state of the system can be defined by means of its actual properties, it seems
that to observe a system, is to positively identify its actual properties. Of course, such an
assumption can be criticized for being too idealistic. Nevertheless, it is a starting point, and
we will soon generalize this notion of observation.

2 States and Properties

In a more recent formulation of quantum logic [1], we start with the set Q of yes–no ques-
tions that one can meaningfully ask about a system S. We assume that to each yes–no ques-
tion, there corresponds a physical test (or experiment) α. Tests that deliver the answer “yes”
with certainty then lead to the concept of an actual property.

Definition 1 (Actual property) If α yields a “yes” with certainty (if we would decide to
perform the test) for a system S, then we say that there is a property a that is actual for that
system S.

If two tests are equivalent, (that is, whenever one test results in a certain “yes”, the other
would certainly also have obtained “yes”, if the other test results in a certain “yes”, the first
test necessarily would also have given “yes”), they naturally test the same property. More
accurately, a property can be identified with an equivalence class of tests. We see that for
an actual property the question of what optimal observation is becomes trivial: the result of
test α for an actual property a, should always give “yes”. In quantum mechanics, however,
a typical proposition such as “the value of a given physical quantity A lies in the range
�” will only be found to hold with a certain probability. Obviously, the corresponding test
does not yield “yes” with certainty and the property is not actual, but potential. In absence
of certainty, we will throughout this paper assume it yields “yes” with a fixed probability.1

What should we do in this case? Let us naively pursue the analogy with the actual property
and tentatively propose

Definition 2 (Potential property—tentative version) If test α yields “yes” with probability
p for a system S, then property a is called potential with degree p for S.

To take this definition seriously, we have to answer what it operationally means to say
a test yields “yes” with probability p. Clearly, the relative frequency should converge to p

for many repetitions of the test. But how many tests do we need to perform? If the sequence
of “yes” and “no” answers is truly stochastic, then isn’t it possible, with some small but
finite probability, to choose a starting point of the yes–no sequence of answers and cut it

1It is quite conceivable that some fluctuating phenomena in nature may fail to converge nicely to a fixed
relative frequency. It is however more difficult to conceive how these should be treated at all! Luckily a very
large and interesting class of phenomena does enjoy the property that the relative frequency converges. If
not, at least our proposal can serve as a means to operationally falsify the label “potential property” to such a
phenomena.
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off at a certain point to get pretty close to any p in the unit interval? Surely such cutting
procedure is unworthy of scientific standards, but the point remains that we want an opera-
tional definition that excludes this possibility. We want to know when we will be satisfied. Is
this after 10 measurements, or after 109 measurements? Clearly for some phenomena a few
measurements are sufficient, whereas other phenomena require delicate and numerous mea-
surements. So the number of measurements in itself doesn’t really tell us what we need,
what we need is a measure of uncertainty. This question was cleverly sidestepped in the
definition of an actual property because in that case we simply demand that it yields “yes”
with certainty. But then again, what is certainty? How many measurements reveal certainty?
We will attempt to take this question seriously and see that, somewhat miraculously, Hilbert
space theories already account for this problem in a really beautiful way. To do so, we will
first need a short excursion into the mother of all stochastic processes: the Bernoulli trial.

3 Bernoulli Processes

A Bernoulli trial is an experiment with a random outcome taken from only two possible
outcomes: “Success” and “Failure”, “1” and “0”, “yes” or “no”, . . . . A Bernoulli process
consists of a sequence of independent identically distributed Bernoulli trials. Here is a defin-
ition: consider a finite or infinite sequence of independent random variables X1,X2,X3, . . . ,
such that:

1. For each i, the value of Xi is either 0 or 1.
2. For all values of i, the probability that Xi = 1 is the same number p.

By sheer combinatorial counting we obtain that, if the experiment is repeated N times,
the probability of precisely k successes equals

P (k) = (
N
k

)
pk(1 − p)N−k.

To obtain average and standard deviation, we calculate the moment generating function:

G(t) =
N∑

k=0

exp(tk)
(
N
k

)
pk(1 − p)N−k

= [p exp(t) + 1 − p]N .

It is then easy to show that the average value of successes is

μ = E[X] = G′(0)

= Np.

The variance, or square of the standard deviation, for the number of successes is

σ 2[X] = E[X2] − E[X]2

= G′′(0) − G′(0)2 = Np(1 − p).

With X being the number of successes in N trials, we define the fraction of successes as
a new random variable X̄ = X/N .
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It’s expectation value is

E[X̄] = E[X/N ] = Np

N
= p

and the variance of the fraction of successes is given by

σ 2[X̄] = σ 2[X/N ]

= 1

N2
Np(1 − p)

= p(1 − p)

N
.

We have included these well-known facts in our presentation to show just how little we need
to get these results, and because they can help in solving our main problem through the next,
truly classic result: the Chebyshev inequality.

Theorem For any discrete random variable X with mean μ and standard deviation σ, and
for any positive number c, we have

P (|X − μ| > cσ) <
1

c2
.

In words: the probability that a random variable will differ more than c standard devia-
tions from its mean value, is never greater than the square of the reciprocal of c. The true
strength of the Chebyshev inequality is not that it provides a tight bound (it usually does
not), but rather that it is extremely general, in that we only require of the random variable
that its mean and standard deviation exist. So in any case, knowing the standard deviation,
gives us at least a clue how far we can expect the relative frequency to lie from the proba-
bility p. An additional problem here, is that the Chebyshev inequality is a limiting theorem
for large N . For a finite ensemble our estimate for the standard deviation depends on our
estimate for the probability,2 so we are still not done.

4 Maximum Predictive Power

There exists in the literature a very nice argument due to Summhammer that shows how
probability amplitudes arise from a purely statistical argument. This is most useful to us,
because the argument simultaneously solves our problem. We will present it briefly in a form
and notation that is close to [13]. Summhammer starts with the observation that, in quantum
mechanics, the magnitude of physical observable quantities is derived from probabilities.
Estimates for these probabilities are experimentally obtained through the relative frequency
of detector clicks. Assume then that we have a dichotomic experiment, where the result “1”
was obtained n1 times, and the result “0” was obtained n2 = N − n1 times. The relative

2The author learned from Andrei Khrennikov (private communication) that a similar problem was one of the
main objections to von Mises’ original frequentist approach. Perhaps this analysis has some bearing on that
problem too.
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frequency of outcome 1 is then n1/N, and this is also our best estimate for the probability
and associated uncertainty interval

p1 = n1

N
, �p1 =

√
p1(1 − p1)

N
,

and likewise for p2. From this estimate we derive the magnitude of a quantity χ by means
of an unspecified relation

χ = χ(p1).

Its associated uncertainty interval is then

�χ =
∣
∣∣
∣
∂χ

∂p1

∣
∣∣
∣�p1 =

∣
∣∣
∣
∂χ

∂p1

∣
∣∣
∣

√
p1(1 − p1)

N
.

We want to concentrate on the observation of those random variables χ for which additional
data always decreases the uncertainty. To do so, we require that

�χ(N + 1) < �χ(N). (1)

Many functions will satisfy this requirement, and to further constrain the set of possible χ ′s,
Summhammer introduces the notion of maximum predictive power:

Definition 3 (Maximum predictive power) A random variable χ allows for maximum pre-
dictive power, if the uncertainty �χ depends only on the number of trials N, and not on the
value of n1.

In this way we can know in advance how many times the experiment needs to be repeated
to reach a certain prescribed uncertainty level. This translates mathematically as

√
N�χ =

∣∣
∣∣
∂χ

∂p1

∣∣
∣∣
√

p1(1 − p1) = C.

The solution of which is given by

χ = C arcsin(2p1 − 1) + D

and its inverse is

p = 1 + sin(
χ−D

C
)

2
= cos2(π/4 − (χ − D)/2C).

As remarked in [13], any smooth function α(χ) of our random variable χ for which equal
intervals along χ correspond to equal intervals along α, will also be a solution. To give one
particular solution, choose C = 1, and D equal to −π/2, to recover

p = cos2(χ/2). (2)

Let us come back to our initial problem: how many tests do we need to perform for it to
be meaningful to say a test yields “yes” with probability p? To put it more generally, if we
infer χ from p, when do we know χ sufficiently precisely? The answer we give here is that,



Int J Theor Phys (2008) 47: 2–14 7

for any confidence interval �χ you require for your estimate of χ, we can tell in advance
how many measurements you need, regardless of the state (or p). And this can be done, if
we insist that the relation between the random variable and the probability is of the nature
of (2). The only really essential requirement to obtain this result, is that the probability is
the same fixed number in [0,1] for each separate trial. To summarize, we can state a more
sensible definition of a potential property as follows:

Definition 4 (Potential property) If, for any prescribed uncertainty interval �p, one can
say in advance how many measurements are necessary such that test α yields “yes” with
probability p within an uncertainty interval �p, then property a is called potential with
degree p and uncertainty �p for S.

What makes this definition operational is that for any desired uncertainty level the theo-
rist requires for the acceptance or refutation of a conjectured potential property, the experi-
menter knows in advance how many measurements he needs to come to a conclusion. The
halting problem for the experimenter is solved in a pragmatic way. Absolute certainty still
follows only after an infinite number of measurements, but for any allowable uncertainty in
the estimate of the degree of potentiality, we know how often we have to question nature for
it to be a reliable judge on our trial. We have explained before that the same problem exists
for an actual property: how many times do we have to repeat the measurement to conclude
that the property actually holds? The answer again depends on how certain one wants to be.
If we set a certain threshold on �p, we can estimate the uncertainty by means of the vari-
ance. However, there is one additional complication here. If we have obtained 9 times the
answer “yes”, our best estimate for the probability is the relative frequency of “yes” answers,
which is also 1. This implies the experimental variance is zero, which does not really tell us
anything useful. However we can remedy this problem by artificially adding a single out-
come with the opposite answer. This implies an estimate for p as 0.9 and the corresponding
estimate for the variance (0.09) provides a lower bound for the estimate of �p.

What is surprising here, is that the representation of a property in Hilbert space quantum
mechanics as a closed one dimensional subspace automatically fulfills this requirement, as
the probability is always of the form of (2). On the other hand it means that for the statistical
estimation of observable quantities in quantum theory (at least without additional classical
errors), we always have that more data decreases one’s uncertainty, as required in (1) and
that for any desired uncertainty level, we can say in advance how many measurements are re-
quired. In this sense quantum measurements for vector states are optimal. Interestingly, there
was another argument in the literature which started from quite different considerations, but
also mathematically hinges essentially on Bernoulli trials, that hinted at a similar result.

5 Optimally Distinguishing Probability Distributions

Suppose, as before, we have an experiment with two possible outcomes, say 0 and 1. De-
pending on the state of the system, the experiment can be characterized by the probability
p of the occurrence of outcome 1. Suppose then that we have prepared four ensembles,
E1, E2, E3 and E4, of systems such that the first ensemble E1, is characterized by a value
p1 = 1, E2 with p2 = 0.9, E3 with p3 = 0.55 and E4 with p4 = 0.45. By making mea-
surements on members of the ensembles, we are to estimate which of the four values of p

pertain to that ensemble. Clearly, it is easier to distinguish (in a finite set of trials for the
experiment) E1 from E2, than it is to distinguish E3 from E4, even though �p is 0.1 in both
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cases. This idea can be made qualitative, as Wootters has done [17, 18]. Suppose that we are
to distinguish two ensembles, one characterized by p, the other by p + �p. For N trials of
an experiment with two possible outcomes, the sequence of outcomes constitute once more
a Bernoulli sequence, with associated standard deviations

σ1 =
√

p(1 − p)

N
, (3)

σ2 =
√

(p + �p)(1 − p − �p)

N
.

We will say that two such states are distinguishable in N trials of the experiment, iff the
difference �p is greater than the sum of these two standard deviations

�p > σ1 + σ2. (4)

Define the statistical distance between the two states as the reciprocal of the square root
of the number (N0) of measurements necessary to make �p equal to the sum of these two
standard deviations:

d(p,p + �p) = 1√
N0

: �p = σ1 + σ2. (5)

To the first order in �p, using 3, this is equal to

d(p,p + �p) = 1

2

|�p|√
p(1 − p)

.

For two arbitrary biases, �p may be large, and we will denote the respective probabilities
as p1 and p2. The definition of statistical distance, as given by R.A. Fisher who used this
definition to study genetic drift, is then

d(p1,p2) = lim
N→∞

n√
N

,

where n is the maximum number of intermediate probabilities that can still be distinguished
in N trials according to the former definition (4). Wootters shows this to be

d(p1,p2) = 1

2

∫ p2

p1

dp√
p(1 − p)

= arccos(
√

p1p2 + √
(1 − p1)(1 − p2)).

The result extends to the case for an experiment with k mutually exclusive outcomes
x1, x2, . . . , xk, with respective probabilities p1(xi) and p2(xi), where it reads

d(p1,p2) = arccos

(
k∑

i=1

√
p1(xi)p2(xi)

)

. (6)

The probabilities can be summarized as vectors π1 and π2 that lie in the standard (k − 1)-
simplex in Euclidean k-space:

πi = (pi(x1),pi(x2), . . . , pi(xk)), i = 1,2. (7)
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If we map (7) to the unit sphere,

ψi = (
√

pi(x1),
√

pi(x2), . . . ,
√

pi(xk)), i = 1,2, (8)

we can rewrite the result of (6) as

d(p1,p2) = arccos(〈ψ1,ψ2〉) (9)

= �(ψ1,ψ2).

It is well-known that any unitarily invariant Riemannian metric on the unit sphere is a trivial
function of d(p1,p2), so (8) leads to a representation of the probabilities in such a way that
the only metric between the two unit vectors, is proportional to the statistical distance. At no
point have we invoked quantum features; yet we obtain a structure that—at least partially—
resonates with the formalism of quantum theory.3 If this line of reasoning is not flawed,
examples of quantum-like theories should exist outside the domain of quantum physics.

6 Signal Analysis in Operator Form

Another famous theory where Hilbert space provides for the basic setting, is signal analysis.
Its similarities with quantum theory come out best if we reformulate it, as is very popular
in modern accounts of the subject [6, 11], in an operator framework. We will introduce the
main concepts of such a formulation very briefly. Let us work in L2(R) = H(C) and start
with a signal with bounded energy:

x ∈ H(C),

Energy =
∫ +∞

−∞
|x(t)|2dt < +∞.

So signal-analysis’ natural setting is that of L2(R), the square integrable functions over
the complex numbers, equipped with the inner product

〈f,g〉 =
∫ +∞

−∞
f ∗(t)g(t)dμ(t) .

An observable quantity is described by a linear self-adjoint (Hermitian) operator Â, with
expectation value

〈Â〉 = 〈x, Âx〉.
Likewise, the expectation value of a function g of an operator is given by

〈g(Â)〉 = 〈x,g(Â)x〉.

3Wootters did extend his argument to the quantum domain. This is necessary and non-trivial because the
inferential power of the experimenter in the quantum domain for the distinguishing of two states, depends on
whatever observable he chooses to measure. Therefore Wootters defines the statistical distance between two
preparations (states) as the largest distance when the preparations are analyzed by the most discriminating
apparatus. Again, he recovers (9). Because the Hilbert space angle obtains only for the most discriminating
apparatus, this is one more indication that Hilbert space representations in some sense already incorporate
maximal statistical performance of observation.
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There are several motivations for a reformulation of signal analysis in terms of operators.
Firstly, many signal analytic operations like filtering, delay, scaling, Doppler-shift, etc., can
be regarded as linear (often unitary) operators that act on the signal. As an example, we give
the Doppler-shift in radar applications, which can be well approximated as

x(t) → x(τ,δ)(t) = x(t − τ)e2πiδt .

A second motivation comes from the uniformization of various approaches in a single theo-
retical framework that the operator formalism provides. A third motivation is that different
representations of a signal (time, frequency, scale, . . . ) can readily be obtained. A typical
situation occurs when we have a signal x(t) in the time domain and seek its frequency rep-
resentation. In an operator framework we define two (self-adjoint) operators T̂ and F̂ by
their action on a signal as follows:

(T̂ x)(t) ≡ t.x(t),

(F̂ x)(t) ≡ −i

2π

dx(t)

dt
.

The signal can be expanded in a basis of eigenvectors y(t) of F̂ :

x(t) = 1√
2π

∫ +∞

−∞
X(ν) exp(2πiνt)dt.

The coefficients X(ν) are obtained through inversion of this integral transform:

X(ν) = 1√
2π

∫ +∞

−∞
exp(−2πiνt)x(t)dt

= [F(x)](ν).

Exactly as is the case for quantum theory, the operational signal-analytic quantities are given
as the expectation values of the operators

〈T̂ 〉 = 〈x, T̂ x〉

=
∫ +∞

−∞
t |x(t)|2dt,

〈F̂ 〉 = 〈x, F̂ x〉

=
∫ +∞

−∞
x∗(t)

(−i

2π

dx

dt
(t)

)
dt

=
∫ +∞

−∞
ν|X(ν)|2dt.

As fourth motivation, we call attention to the fact that, in some cases, the operator frame-
work offers strong calculational advantages in comparison with the standard formulation.
For example, define the average of a general function g of frequency (or time, or scale) as

〈g(F̂ )〉 =
∫ +∞

−∞
x∗(t)g

(−i

2π

d

dt

)
x(t)dt.
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Using Parseval’s relation, this can be also rewritten as

〈g(F̂ )〉 =
∫ +∞

−∞
g(ν)|X(ν)|2dt.

So we have two ways of obtaining the average of a function g of frequency in two distinct
ways: one employing the Fourier transform, the other directly on the time signal through the
operator formalism. That the first formula often represents a much easier way to calculate
the average is advocated with examples in, for example, [5].

Note also that, because the operators T̂ and F̂ do not commute ([T̂ , F̂ ] = i
2π

Î ), an un-
certainty relation (reminiscent of the famous Heisenberg inequality) holds:

�T̂ · �F̂ ≥ 1

4π
.

7 Joint Observable Representations

Let ψ ∈ L2(R) and define [Q̂](q) = q and [P̂ ](q) = −i� d
dq

ψ(q). As is well-known from

quantum theory, the expectation value of the position operator Q̂ is given by:

〈Q̂〉 =
∫ +∞

−∞
q|ψ(q)|2dq

and likewise for the momentum operator P̂ . Recall that for a probability density function
f (x), the kth moment is defined as

μk =
∫ +∞

−∞
xkf (x)dx.

Interpreting the |q(t)|2 and |X(ν)|2 as probability densities (positive and finite), this coin-
cides with the usual definition of averages. It is then natural to assume that |ψ(q)|2, |ψ(p)|2
(with an abuse of notation that is customary in physics, the second) are densities in the po-
sition and momentum space respectively. It is now reasonable to ask whether there exists
a joint-representation ρ(q,p) such that the correct marginals are obtained and the distribu-
tion is normalized:

∫ +∞

−∞
ρ(q,p)dx = |ψ(p)|2,

∫ +∞

−∞
ρ(q,p)dp = |ψ(q)|2,

∫ +∞

−∞

∫ +∞

−∞
ρ(q,p)dqdp = 1.

In fact, Wigner needed such a joint distribution to calculate quantum corrections to the sec-
ond virial coefficient [16] for quantum gases. He obtained:

ρ(q,p) = 1

π�

∫ +∞

−∞
ψ∗(q + y)ψ(q − y) exp

(
2ipy

�

)
dy. (10)

This is however not a positive density unless ψ is Gaussian [12], and was hence called
a quasi-density function or quasi-distribution. In 1948 Ville [15] proposed to calculate a joint
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time-frequency representation of a signal through the formula:

WV (t,ω) = 1

2π

∫ +∞

−∞
x∗

(
t + τ

2

)
x

(
t − τ

2

)
exp(iωτ)dτ. (11)

The former function is now commonly called the Wigner–Ville (quasi) distribution. It is
obvious why this should be the case, for the joint time-frequency representation of (11)—
disregarding the ontological status of the quantities—is only a trivial transformation away
from the Wigner distribution (10).

8 Similarities and Differences

Let us briefly sum up the main similarities we have obtained between quantum theory and
signal analysis in the following table.

Quantum theory Signal analysis

State ψ(q, t) ∈ L2(R) Signal x(t) ∈ H(C,R)

|ψ |2 |x|2
ψ(p) =F [ψ] X(ν) = F [x]
[Q̂, P̂ ] = i�Î [T̂ , F̂ ] = i

2π
Î

�P̂ · �Q̂ ≥ h
4π

�T̂ · �F̂ ≥ 1
4π

ρ(q,p) WV (t,ω)

We see that indeed most quantum theoretic quantities have a counterpart in signal analy-
sis. More details on the profound relationship between these two subjects can be found in
[2, 5–7, 12]. Yet we have never heard of the measurement problem in signal analysis, or of
non-locality. Why is it that no counterpart of these notorious philosophical issues exists in
signal analysis when it does in quantum theory? We believe the main difference lies in the
ontological status of the most basic concept in signal analysis (the signal) and in quantum
theory (the state of the system). In signal analysis, the signal that we have actually mea-
sured consists of the data that we have actually measured and so it is the end point in the
physical process of measurement, and the starting point for the data analysis. After one has
obtained the signal, one can perform any transformation one wants, without destroying (or
even slightly altering) the signal. In particular, signals can be copied freely. In quantum the-
ory, on the other hand, the state of the system is the subject of the measurement; it is that
what we want to measure. In general it is unknown and cannot be copied with certainty.
Different representations of the state can readily be obtained theoretically through the Dirac
transformation theory, but to actually obtain measurement results in one representation or
another, we have to use an entirely different measurement setup. The measurement changes
the state of the system, making it impossible to know the outcome another (possibly non-
compatible) measurement would have given. In short, a signal has the status of classical
information, whereas the quantum state has the status of quantum information. Of course,
the result of measuring an observable for a given quantum system is an outcome, and indeed
has again the status of classical information. Alas, the quantum information is no longer
of the same nature once this outcome has been obtained. Because of this sharp ontological
distinction between a state and a signal, they can exhibit very explicit differences. For ex-
ample, according to quantum theory, a compound system is to be described in the tensor
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product space of the state spaces of its constituents, giving rise to the spectacular probabilis-
tic effects of entanglement, such as the EPR correlations for the singlet state. This feature
is entirely absent in signal analysis. In spite of these differences, the striking similarities
have often led to a cross-fertilization between the two fields (for examples, see [2, 6]). One
is left to wonder what rôle the extremely well-developed formalism of quantum theory can
have in the further development of other theories of observation in which the basic setting is
formed by the complex Hilbert space, such as the recently founded theories of shapes [10]
and information retrieval [14].

9 Concluding Remarks

We started with an inquiry into the probabilistic implications of taking the concept of po-
tential property seriously in an operational sense. We proposed that a potential property can
only be inferred to be of degree p for any desired uncertainty level �p, if one can tell in
advance (that is without knowing p but with knowledge of the desired uncertainty level �p)
how many measurements are required to reach such a conclusion. This is indeed an oper-
ational definition, because for any uncertainty level desired, we know when our process of
inquiry will end. Drawing from the work of Summhammer, we showed that this leads to
a natural representation of the potential property as an element of the unit sphere. Similarly
Wootters has obtained the Hilbert space distance from considerations of optimally distin-
guishing between probability distributions. If it is not nature, but the requirement of optimal
inference that dictates the basic setting should be a Hilbert space, then there should exist
other examples of theories of observation outside the quantum domain with similar fea-
tures. Signal analysis provides for such an example, and we believe it does so because it is
concerned with a formalization of observation in the sense of optimal statistical inference.
The idea of observation as optimal inference goes back at least to Helmholtz [9], but has
many contemporary advocates (see [3, 8] and the references found there). We believe that
the fact that both fields employ the same formalism, in spite of the fact that they deal with
different parts of reality, makes that point of view even more plausible, for what unites them
on a conceptual level, is that both are ultimately concerned with the optimal extraction of
information from nature.
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